Isoperimetric Inequalities and the Friedlander–milnor Conjecture

نویسنده

  • TIBOR BEKE
چکیده

We prove that Friedlander’s generalized isomorphism conjecture on the cohomology of algebraic groups, and hence Milnor’s conjecture on the cohomology of the complex algebraic Lie group G(C) made discrete, are equivalent to the existence of an isoperimetric inequality in the homological bar complex of G(F ), where F is the algebraic closure of a finite field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integral Homology of PGL 2 over Elliptic

The Friedlander{Milnor Conjecture 1] asserts that if G is a reductive algebraic group over an algebraically closed eld k, then the comparison map H et (BG k ; Z=p) ?! H (BG; Z=p) is an isomorphism for all primes p not equal to the characteristic of k. Gabber's rigidity theorem 2] implies that this map is indeed an isomorphism for the stable general linear group GL (this is due to Suslin 6] for ...

متن کامل

Proceedings of Symposia in Pure Mathematics Integral Homology of PGL 2 over Elliptic CurvesKevin

The Friedlander{Milnor Conjecture 1] asserts that if G is a reductive algebraic group over an algebraically closed eld k, then the comparison map H et (BG k ; Z=p) ?! H (BG; Z=p) is an isomorphism for all primes p not equal to the characteristic of k. Gabber's rigidity theorem 2] implies that this map is indeed an isomorphism for the stable general linear group GL (this is due to Suslin 6], als...

متن کامل

Low Dimensional Homology of Linear Groups over Hensel Local Rings

We prove that if R is a Hensel local ring with infinite residue field k, the natural map Hi(GLn(R),Z/p) → Hi(GLn(k), Z/p) is an isomorphism for i ≤ 3, p 6= char k. This implies rigidity for Hi(GLn), i ≤ 3, which in turn implies the Friedlander–Milnor conjecture in positive characteristic in degrees ≤ 3. A fundamental question in the homology of linear groups is that of rigidity: given a smooth ...

متن کامل

The application of isoperimetric inequalities for nonlinear eigenvalue problems

Our aim is to show the interplay between geometry analysis and applications of the theory of isoperimetric inequalities for some nonlinear problems. Reviewing the isoperimetric inequalities valid on Minkowskian plane we show that we can get estimations of physical quantities, namely, estimation on the first eigenvalue of nonlinear eigenvalue problems, on the basis of easily accessible geometric...

متن کامل

Isoperimetric Inequalities and the Asymptotic Rank of Metric Spaces

In this article we study connections between the asymptotic rank of a metric space and higher-dimensional isoperimetric inequalities. We work in the class of metric spaces admitting cone type inequalities which, in particular, includes all Hadamard spaces, i. e. simply connected metric spaces of nonpositive curvature in the sense of Alexandrov. As was shown by Gromov, spaces with cone type ineq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004